

Asja Group | Biogas from wastes & by-products

Flora Erriquens BU Biogas & Biomasses | Asja Group f.erriquens@asja.biz

Ċ

- **Biogas:** basic concepts
- Anaerobic digestion: basic concepts
- How to produce biogas: energy from wastes & byproduct
- How to use biogas: cogeneration & upgrading
- Types of anaerobic digestion plants
- Two cases of anaerobic digestion plant

BIOGAS BASIC CONCEPTS (I/II)

- Biogas is a **fuel gas** consisting of methane, carbon dioxide and small amounts of other gases and trace elements
- Biogas is produced by a microbiological process of decomposition of organic matter
- The process occurs in the **absence of oxygen** (O₂)
- The process is carried out by a wide range of microorganisms
- The process occurs normally in many **natural** environments like forest litters and landfills
- It can be carried out under controlled conditions in airproof reactor tanks commonly named digesters

BIOGAS BASIC CONCEPTS (II/II)

Chemical Components	Unit	Content	Usual value
Methane (CH ₄)	%vol	50-80	60
Carbon dioxide(CO ₂)	%vol	25-45	40
Oxygen (O ₂)	%vol	0-1	<0.1
Nitrogen (N ₂)	%vol	0-3	<0.3
Hydrogen (H ₂)	ppm	0-3,000	<1,000
Water vapour (H_2O)	-	saturation	saturation
Ammonia (NH ₃)	%vol	0-1	<0.1
Hydrogen disulfide (H ₂ S)	ppm	0-9,000	<300
Trace compounds	ppm	0-100	<10

ANAEROBIC DIGESTION BASIC CONCEPTS (I/II)

Anaerobic Digestion (AD) is a complex biological process in which different groups of microorganisms' work together and in sequence to break down biodegradable organic matter and produce CH_4 , CO_2 as microbial byproducts.

AD requires strict anaerobic conditions and evolve through 4 microbiological steps:

- Hydrolysis
- Acidogenesis
- Acetogenesis
- Methanogenesis

 \mathbf{C}

ANAEROBIC DIGESTION BASIC CONCEPTS (II/II)

HOW TO PRODUCE BIOGAS ENERGY FROM WASTES & BY-PRODUCT (I/II)

HOW TO USE BIOGAS ENERGY FROM WASTES & BY-PRODUCT

COGENERATION (CHP) ENERGY FROM WASTES & BY-PRODUCT

BIOGAS UPGRADING ENERGY FROM WASTES & BY-PRODUCT (I/III)

BIOGAS UPGRADING ENERGY FROM WASTES & BY-PRODUCT (II/III)

Biogas Upgrading to high energy biomethane is a technology based on the separation of CH_4 from CO_2 and trace elements.

The final products are:

- Biomethane: substitute natural gas used for grid injection and/or as vehicle fuel
- Offgas: CO₂ enriched gas that can be employed for industrial purposes

Technologies are built on unit operations based on principles of

- absorption (PWS, PSA)
- permeation (membrane separation)
- criogenic separation

BIOGAS

 \mathbf{C}

 $\begin{array}{l} CH_4 {=} 50 {-} 80\% \\ CO_2 {=} 25 {-} 45\% \\ N_2 \ {+} \ O_2 {<} 1\% \\ H_2 S \ {=} 50 {-} 5.000 \ \text{ppm} \\ H_2 O \ {=} \ \text{saturated} \end{array}$

BIOGAS UPGRADING ENERGY FROM WASTES & BY-PRODUCT (III/III)

Membrane separation

ORGANIC MATERIALS FOR BIOGAS PRODUCTION

- Organic fraction of municipal solid wastes
- Straw
- Tomato skins
- Potato & beet wastes
- Whey milk
- Grape marks & lees
- Olive pomace & olive mill waste waters
- Livestock manures (bovine, ovine, poultry farms)
- Coffee wastes (coffee ground, coffee out of specification)
- Bakery & cereal wastes
- Corn
- Sorghum
- Triticale (a hybrid between rye and wheat)

BIOGAS POTENTIAL OF DIFFERENT SUBSTRATES

Biomass	Methane yeld [%]	Biogas yeld [m ³ /t fw]
Organic fraction of MSW	60	130 - 180
Liquid Cattle manure	60	25
Liquid Pig manure	65	28
Distilled grains	61	40
Poultry manure	60	45
Cattle manure	60	60
Pig manure	60	80
Beet	53	88
Sweet sorghum	54	108
Forage beet	51	111
Grass silage	54	172
Corn silage	52	202

TYPE OF ANAEROBIC DIGESTION PLANT

Parameter	Application
Temperature	Psychrophilic
	Mesophilic
	Thermophilic
Total solid content	Wet
	Semi dry
	Dry
Configuration	Single-stage (phase)
	Two-stages (phases)

TEMPERATURE

•	Psychrophilic digestion	below 25°C

- Mesophilic digestion 25°C 45°C
- Thermophilic digestion 45°C 70°C

TOTAL SOLIDS

- Wet digestion TS<10%
- Semi dry digestion TS=10% 25%
- Dry digestion TS=25% 40%

CONFIGURATION

C

- <u>Single-stage</u> digestion system consists of only one tank or reactor. All the 4 anaerobic digestion microbiological steps occur in the same reactor.
- <u>Two-stage</u> digestion system consist of at least two separate tanks or reactors. In this case Hydrolysis occurs in a separate reactor with respect to acidogenesys, acetogenesys and methanogenesys.

WET ANAEROBIC DIGESTION AGRICULTURAL AND AGROINDUSTRIAL RESIDUES

- Biomasses characterized by a total solid content lower than 10%
- Codigestion with liquid biomasses (total solids <3-4%)
- Continuous and automatic feeding system
- Continuous stirring thank reactor (CSTR)
- Mesophylic anaerobic digestion (35 45 °C)
- Biogas storage into gasometric cup
- Integrated biogas sulphur removal
- Continuous monitoring of process parameters
- Direct use of digestate as a soil liquid or solid fertilizer

DRY ANAEROBIC DIGESTION ORGANIC FRACTION OF MUNICIPAL SOLID WASTES

- Biomasses characterized by high total solid content (30-40%)
- Continuous or batch feeding system
- Plug and flow reactor or batch reactor
- Thermophilic anaerobic digestion (55 °C)
- Continuous monitoring of process parameters
- Integrated or external biogas sulphur removal
- Digestate need to be treated before land application

APPLICATIONS

biogas plant from Organic Fraction Municipal Solid Waste (OFMSW)

TWO CASES OF ANAEROBIC DIGESTION PLANT

0

biogas plant from agricultural products agroindustrial by-products

AGRO-INDUSTRIAL BY-PRODUCTS BIOGAS PLANT MASS BALANCE

Ċ

AGRO-INDUSTRIAL BY-PRODUCTS BIOGAS PLANT POWER 999 kW | P&I

AGRO-INDUSTRIAL BY-PRODUCTS BIOGAS PLANT Biomethane production | P&I

AGRO-INDUSTRIAL BY-PRODUCTS BIOGAS PLANT OPERATIONAL PARAMETERS

- Organic loading rate (OLR) = 3 KgSV/m³_{reactor} d
- Hydraulic retention time (HRT) = 40 days
- Operational temperature (T) = 40 °C
- Total solids (TS) = 11% fresh weight
- Specific gas production (SGP) = 96 Nm³/t F.W.

WET AGRO-INDUSTRIAL BY-PRODUCTS BIOGAS PLANT LAYOUT

WET OFMSW BIOGAS PLANT LAYOUT

DRY OFMSW BIOGAS PLANT MASS BALANCE

DRY OFMSW BIOGAS PLANT Cogeneration | P&I

DRY OFMSW BIOGAS PLANT Biomethane production | P&I

OFMSW BIOGAS PLANT OPERATIONAL PARAMETERS

C+

- Organic loading rate (OLR) = 10 KgSV/m³_{reactor} d
- Hydraulic retention time (HRT) = 25 days
- Operational temperature (T) = 55 °C
- Total solids (TS) = 30% fresh weight
- Specific gas production (SGP) = 160 Nm³/t F.W.

OFMSW BIOGAS PLANT LAYOUT

www.asja.energy | info@asja.energy | © All rights reserved